
University of Virginia cs2120: Discrete Mathematics and Theory

Test 4 — Comments

Problem 1 Cardinalities

(a) S := {Aidan, Dave}

Answer: S is finite. It has two elements so it is finite.

We could also show that there exists a bijection from the set to N2, which means it is finite by the definition.

(b) S := R − N

Answer: S is uncountable. The difference between an uncountable set and a countable set is an uncountable
set (we saw this on one of the practice problems).

(c) S := (N × N) × N

Answer: S is countably infinite. The Cartesian product between two countably infinite sets will result in a
countably infinite set. We can break this down into showing that N × N is countably infinite (we showed
this in class), and then using a similar covering path to show that (N × N) × N is also countably infinite.

(d) S := R − pow(N)

Answer: S is uncountable. The set S is just the R, since the set we are removing is a set of sets, so does not
include any real numbers (and certainly not an uncountable number of them).

(e) S := {G | G ∈ pow(N × N) ∧ R = (N,N, G) is a bijection}

Answer: S is uncountable, We can define a bijection between any R and permutations of N (this was on
the practice problems).

(f) S := the set of all surjective functions between N and N.

Answer: S is uncountable. We can define a surjective function between any R and permutations of N. Note
that this set is a superset of the set in 1e since every bijection is also a surjective function. This, it must be at
least as big as that set, so it must also be uncountable.

Problem 2 Diagonalization Proof?

In class we saw a diagonalization proof (very close to the one Cantor developed in his 1891 paper) that the
set of infinite binary strings, {0, 1}∞ is uncountable (this is identical to the proof in the practice problems)

1. We prove the set of infinite binary strings, S = {0, 1}∞ is uncountable by contradiction.

2. Assume towards a contradiction that there exists a surjective function R = (N, S, G ⊆ N × S) from N
to S.

3. Since R is function, for each n ∈ N there is at most one s ∈ S where (n, s) ∈ G. Let An := s be that
element and identify the characters of An as an,1an,2an,3 . . . .

4. Define b = b1b2b3 . . . where bi = ¬a(i,i) and ¬0 = 1 and ¬1 = 0.
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5. Since b is an infinite bitstring, we know b ∈ S. Since each bit is different from one bit in each An

and since R is surjective we know ∀s ∈ S.∃m ∈ N.Am = s but b is not in the mapping and we have a
contradiction.

For each subproblem, indicate of the alternate construction for step 4 would result in a valid or invalid proof
and explain why. (Differences from the previous subproblem are underlined.)

(a) Define b = b1b2b3 . . . where bi = W (ai,i) where W (0) = 5 and W (1) = 0.

Answer: Invalid. b can contain 5’s so b might not be a binary string (b /∈ S).

(b) Define b = b1b2b3 . . . where bi = W (ai+1,i+1) where W (0) = 1 and W (1) = 0.

Answer: Invalid. One issue is that no bit is taken from the first row, so it is possible that b = A1. Another
problem is that bi,i may not differ from ai because it flips a bit from ai+1. Another problem is that the bi

mismatches with index i + 1 instead of i. (Only necessary to identify one of these—any one of the problems
by itself breaks the proof.)

(c) Define b = b1c1b2c2b3c3 . . . where bi = W (ai,i) and ci = W (ai,2i) where W (0) = 1 and W (1) = 0.

Answer: Valid. For every Ai, b2i is different from Ai,2i, so we know b is not in the table, but b ∈ S since it is
an infinite bitstring.

Problem 3 True, False, or Unresolvable

For each subproblem, indicate the truthiness of the stated proposition and provide a brief but clear and
convincing justification for your answer.

(a) There exists a surjective function from the natural numbers to the reals R = (N,R, G).

Answer: False. Since |N|< |R| there cannot be a surjective function between N and R.

(b) There exists a G for which R = (N, pow(N), G ⊆ N × pow(N)) is total (≥ 1 out) and injective (≤ 1 in).

Answer: True. Since |pow(N)|> |N| there must be a surjective function from pow(N) to N. In the other
direction, there must be a total injective relation (we can just reverse the arrows to find one).

(c) |pow(pow(R))|> |pow(R)|.

Answer: True. Cantor’s Theorem proved that for any set A, |pow(A)| > |A|, here A = pow(R).

Problem 4 Subsets of N

Define Sn as the set of all n-element subsets of N:

Sn := {s|s ∈ pow(N) ∧ |s|= n}

(a) P := ∀n ∈ N . Sn is Countable.

Comments: The subtlety to notice here is that for n = 0, Sn is a finite set (with one element). We hope
many of you realized this in attempting the proof. For n ≥ 1, Sn is countably infinite (so we did award
partial credit for this answer).

(b) Prove the proposition P (as you completed it in part a).

Induction Proof. We prove the proposition, P := ∀n ∈ N . Sn is countable, using the principle of induction
on the natural numbers:
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1. Our inductive predicate is P (n) ::= Sn is countable.

2. Base Case: P (0).
The set S0 consists of all subsets of N with exactly 0 elements. There is only one such subset: the
empty set: S0 = {∅}. This has cardinality 1, so it is finite and countable.

3. Inductive Step: ∀m ∈ N.P (m) =⇒ P (m + 1). To prove the implication, we need to show the
conclusion is true when P (m) is true.

4. By P (m), since Sm is countable, there exists a surjective function:

Rm = (N, Sm, Gm)

5. We construct a surjective function from N × N onto Sm+1

Rm+1 = (N × N, Sm+1, Gm+1)

Gm+1 = {((n1, n2), Gm(n1) ∪ {n2}) | (n1, n2) ∈ N × N}

6. Since N×N is countable and we have a surjective function onto Sm+1, it follows that Sm+1 is countable.

7. We have shown P (m) ⇒ P (m + 1), completing the inductive step.

8. Thus, by the principle of induction on the natural numbers, Sn is countable for all n ∈ N. ■

Well-Ordering Principle Proof. Here, we show another proof of the theorem, this time using the well-
ordering principle.

1. Define the predicate, P (n) ::= Sn is countable.

2. Define the set of counter-examples:

C ::= {n ∈ N | ¬P (n)}

3. Assume, towards a contradiction, that the set of counterexamples is non-empty.

4. By the well-ordering principle, C has a minimum element. Let m ∈ C be the minimal counterexample.

5. We know m > 0, since S0 = {∅} has exactly one element, so S0 is countable. Thus, 0 /∈ C.

6. Since m is the minimum of C and we know m > 0 from the previos step, we know m − 1 /∈ C, so
P (m − 1) holds.

7. Thus, Sm−1 is countable and there exists a surjective function:

Rm = (N, Sm−1, Gm−1)

8. We construct a surjective function from N × N onto Sm

Rm = (N × N, Sm, Gm = {((n1, n2), Gm(n1) ∪ {n2}) | (n1, n2) ∈ N × N})

9. Since N × N is countable, we know Sm is countable because of the surjective function we constructed
in the previous step.

10. But this contradicts m ∈ C. Therefore, our assumption that C is non-empty must be false.

11. Thus, since C is empty, P (n) holds for all n ∈ N.
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Some of our favorite uncountable vaguabeasts.

Have a great summer! Hope to see you in DMT2 or Law & AI in the Fall.
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