Test 4 — Comments

Problem 1 Cardinalities

(a) $S := \{ Aidan, Dave \}$

Answer: *S* is finite. It has two elements so it is finite.

We could also show that there exists a bijection from the set to \mathbb{N}_2 , which means it is finite by the definition.

(b) $S := \mathbb{R} - \mathbb{N}$

Answer: *S* is uncountable. The difference between an uncountable set and a countable set is an uncountable set (we saw this on one of the practice problems).

(c)
$$S := (\mathbb{N} \times \mathbb{N}) \times \mathbb{N}$$

Answer: *S* is countably infinite. The Cartesian product between two countably infinite sets will result in a countably infinite set. We can break this down into showing that $\mathbb{N} \times \mathbb{N}$ is countably infinite (we showed this in class), and then using a similar covering path to show that $(\mathbb{N} \times \mathbb{N}) \times \mathbb{N}$ is also countably infinite.

(d)
$$S := \mathbb{R} - pow(\mathbb{N})$$

Answer: *S* is uncountable. The set *S* is just the \mathbb{R} , since the set we are removing is a set of *sets*, so does not include any real numbers (and certainly not an uncountable number of them).

(e) $S := \{G \mid G \in pow(\mathbb{N} \times \mathbb{N}) \land R = (\mathbb{N}, \mathbb{N}, G) \text{ is a bijection} \}$

Answer: *S* is uncountable, We can define a bijection between any *R* and permutations of \mathbb{N} (this was on the practice problems).

(f) S := the set of all surjective functions between \mathbb{N} and \mathbb{N} .

Answer: *S* is uncountable. We can define a surjective function between any *R* and permutations of \mathbb{N} . Note that this set is a superset of the set in 1e since every bijection is also a surjective function. This, it must be at least as big as that set, so it must also be uncountable.

Problem 2 Diagonalization Proof?

In class we saw a diagonalization proof (very close to the one Cantor developed in his 1891 paper) that the set of infinite binary strings, $\{0, 1\}^{\infty}$ is *uncountable* (this is identical to the proof in the practice problems)

- 1. We prove the set of infinite binary strings, $S = \{0, 1\}^{\infty}$ is uncountable by contradiction.
- 2. Assume towards a contradiction that there exists a surjective function $R = (\mathbb{N}, S, G \subseteq \mathbb{N} \times S)$ from \mathbb{N} to S.
- 3. Since *R* is function, for each $n \in \mathbb{N}$ there is at most one $s \in S$ where $(n, s) \in G$. Let $A_n := s$ be that element and identify the characters of A_n as $a_{n,1}a_{n,2}a_{n,3}\ldots$
- 4. Define $b = b_1 b_2 b_3 \dots$ where $b_i = \neg a_{(i,i)}$ and $\neg 0 = 1$ and $\neg 1 = 0$.

5. Since *b* is an infinite bitstring, we know $b \in S$. Since each bit is different from one bit in each A_n and since *R* is surjective we know $\forall s \in S . \exists m \in \mathbb{N} . A_m = s$ but *b* is not in the mapping and we have a contradiction.

For each subproblem, indicate of the alternate construction for step 4 would result in a valid or invalid proof and explain why. (Differences from the previous subproblem are <u>underlined</u>.)

(a) Define $b = b_1 b_2 b_3 \dots$ where $b_i = W(a_{i,i})$ where W(0) = 5 and W(1) = 0.

Answer: Invalid. *b* can contain 5's so *b* might not be a binary string ($b \notin S$).

(b) Define $b = b_1 b_2 b_3 \dots$ where $b_i = W(a_{i+1,i+1})$ where $W(0) = \underline{1}$ and W(1) = 0.

Answer: Invalid. One issue is that no bit is taken from the first row, so it is possible that $b = A_1$. Another problem is that $b_{i,i}$ may not differ from a_i because it flips a bit from a_{i+1} . Another problem is that the b_i mismatches with index i + 1 instead of i. (Only necessary to identify one of these—any one of the problems by itself breaks the proof.)

(c) Define $b = b_1 \underline{c_1} b_2 \underline{c_2} b_3 \underline{c_3} \dots$ where $b_i = W(a_{i,i})$ and $c_i = W(a_{i,2i})$ where W(0) = 1 and W(1) = 0.

Answer: Valid. For every A_i , b_{2i} is different from $A_{i,2i}$, so we know b is not in the table, but $b \in S$ since it is an infinite bitstring.

Problem 3 True, False, or Unresolvable

For each subproblem, indicate the truthiness of the stated proposition and provide a brief but clear and convincing justification for your answer.

(a) There exists a surjective function from the natural numbers to the reals $R = (\mathbb{N}, \mathbb{R}, G)$.

Answer: False. Since $|\mathbb{N}| < |\mathbb{R}|$ there cannot be a surjective function between \mathbb{N} and \mathbb{R} .

(b) There exists a G for which $R = (\mathbb{N}, pow(\mathbb{N}), G \subseteq \mathbb{N} \times pow(\mathbb{N}))$ is total (≥ 1 out) and injective (≤ 1 in).

Answer: True. Since $|pow(\mathbb{N})| > |\mathbb{N}|$ there must be a surjective function from $pow(\mathbb{N})$ to \mathbb{N} . In the other direction, there must be a total injective relation (we can just reverse the arrows to find one).

(c) $|pow(pow(\mathbb{R}))| > |pow(\mathbb{R})|.$

Answer: True. Cantor's Theorem proved that for any set A, |pow(A)| > |A|, here $A = pow(\mathbb{R})$.

Problem 4 Subsets of \mathbb{N}

Define S_n as the set of all *n*-element subsets of \mathbb{N} :

$$S_n := \{s | s \in pow(\mathbb{N}) \land |s| = n\}$$

(a) $P := \forall n \in \mathbb{N} . S_n$ is <u>Countable</u>.

Comments: The subtlety to notice here is that for n = 0, S_n is a finite set (with one element). We hope many of you realized this in attempting the proof. For $n \ge 1$, S_n is countably infinite (so we did award partial credit for this answer).

(b) Prove the proposition *P* (as you completed it in part a).

Induction Proof. We prove the proposition, $P := \forall n \in \mathbb{N} . S_n$ is countable, using the principle of induction on the natural numbers:

- 1. Our inductive predicate is $P(n) ::= S_n$ is countable.
- 2. Base Case: *P*(0).

The set S_0 consists of all subsets of \mathbb{N} with exactly 0 elements. There is only one such subset: the empty set: $S_0 = \{\emptyset\}$. This has cardinality 1, so it is finite and countable.

- 3. Inductive Step: $\forall m \in \mathbb{N}. P(m) \implies P(m+1)$. To prove the implication, we need to show the conclusion is true when P(m) is true.
- 4. By P(m), since S_m is countable, there exists a surjective function:

$$R_m = (\mathbb{N}, S_m, G_m)$$

5. We construct a surjective function from $\mathbb{N}\times\mathbb{N}$ onto S_{m+1}

$$R_{m+1} = (\mathbb{N} \times \mathbb{N}, S_{m+1}, G_{m+1})$$
$$G_{m+1} = \{((n_1, n_2), G_m(n_1) \cup \{n_2\}) \mid (n_1, n_2) \in \mathbb{N} \times \mathbb{N}\}$$

- 6. Since $\mathbb{N} \times \mathbb{N}$ is countable and we have a surjective function onto S_{m+1} , it follows that S_{m+1} is countable.
- 7. We have shown $P(m) \Rightarrow P(m+1)$, completing the inductive step.
- 8. Thus, by the principle of induction on the natural numbers, S_n is countable for all $n \in \mathbb{N}$.

Well-Ordering Principle Proof. Here, we show another proof of the theorem, this time using the wellordering principle.

- 1. Define the predicate, $P(n) ::= S_n$ is countable.
- 2. Define the set of counter-examples:

$$C ::= \{ n \in \mathbb{N} \mid \neg P(n) \}$$

- 3. Assume, towards a contradiction, that the set of counterexamples is non-empty.
- 4. By the well-ordering principle, C has a minimum element. Let $m \in C$ be the minimal counterexample.
- 5. We know m > 0, since $S_0 = \{\emptyset\}$ has exactly one element, so S_0 is countable. Thus, $0 \notin C$.
- 6. Since m is the minimum of C and we know m > 0 from the previos step, we know $m 1 \notin C$, so P(m 1) holds.
- 7. Thus, S_{m-1} is countable and there exists a surjective function:

$$R_m = (\mathbb{N}, S_{m-1}, G_{m-1})$$

8. We construct a surjective function from $\mathbb{N}\times\mathbb{N}$ onto S_m

$$R_m = (\mathbb{N} \times \mathbb{N}, S_m, G_m = \{((n_1, n_2), G_m(n_1) \cup \{n_2\}) \mid (n_1, n_2) \in \mathbb{N} \times \mathbb{N}\})$$

- 9. Since $\mathbb{N} \times \mathbb{N}$ is countable, we know S_m is countable because of the surjective function we constructed in the previous step.
- 10. But this contradicts $m \in C$. Therefore, our assumption that C is non-empty must be false.
- 11. Thus, since C is empty, P(n) holds for all $n \in \mathbb{N}$.

Some of our favorite uncountable vaguabeasts.

Have a great summer! Hope to see you in DMT2 or Law & AI in the Fall.

4